

AGRICULTURAL FINANCE

Fad or Future: Controlled Environment Agriculture

November 22, 2021

Executive Summary

Controlled environment agriculture (CEA) has benefitted in recent years from consumer preferences that increasingly favor sustainability. While the origination of CEA dates back centuries, CEA did not flourish in the U.S. until recently, with output increasing 56% since 2009.¹ The industry is poised to grow further still, due to technological innovation and increased investment in the space. Challenges remain, though, as CEA operators face higher production costs and rising competition from imports. Regardless, we expect CEA to play an increasingly important role in the modern U.S. food system.

Introduction

Modern CEA combines engineering, plant science, and computer-managed greenhouse control technologies to optimize plant growing systems, quality, and overall production.² It encompasses everything from basic hoop houses, to greenhouses, to fully automated and climate-controlled vertical farms. In the past decade investors have taken notice of this innovation and the potential that it holds, infusing over \$1.8 billion into CEA (Figure 1).³ This investment has helped fuel the more than 50% expansion in CEA output in the U.S. since 2009.⁴

\$800 \$700 \$600 \$500 \$400 \$300 \$200 \$100 \$0 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1 | Investment in CEA (\$millions)

Source: S2G Ventures, MIM

CEA as Part of the Vision for the Future of Agriculture

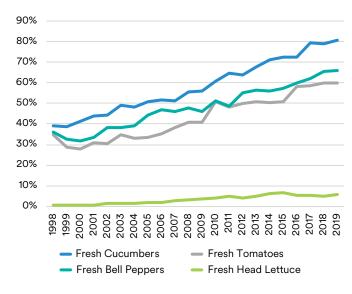
CEA's expansion in recent years can be attributed to multiple advantages associated with the practice. Most notably, CEA provides the opportunity for production uniformity as plants grown indoors are not subject to the variability of the outside environment. This allows producers to experiment and optimize growing techniques to increase output, improve appearance, or even raise the nutritional content of the crops.^{5,6} Furthermore, operators can locate production closer to consumers, which reduces transportation costs and allows for fresher produce year-round. Finally, water use requirements are generally significantly lower for CEA production, which can reduce irrigation costs in certain drought prone areas (Figure 2).⁷

Operators can locate production closer to consumers, which reduces transportation costs and allows for fresher produce year-round

1200% 1000% 800% 600% 400% 200% 0% CO2e Emissions (g) Yield Per Area Water Demand **Energy Demand** Cost (\$/lb) $(kg/m^2/y)$ (L/kg/y) (kJ/kg/y) ■ Hydroponic Greenhouse Conventional

Figure 2 | Comparison of Conventional and Hyroponic Greenhouse Growing Methods

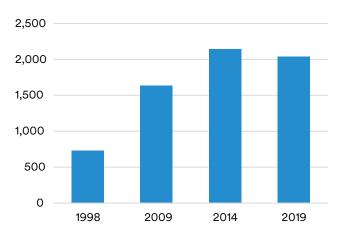
Source: International Journal of Environmental Research and Public Health, Agronomy for Sustainable Development, AaFunderNews. MIM


Despite praise surrounding the environmental benefits of CEA, significant hurdles still exist. Among these are higher energy use per unit of production and increased total costs of production.8 CEA promises to reduce the carbon footprint associated with transportation distances and fertilizer requirements. However, increased energy use, primarily from controlling the climate in the growing environment, currently offsets this entire reduction and more.9

The greater energy usage also raises the cost of production above comparable non-CEA production. Cost estimates for growing leafy greens such as lettuce and kale in a hydroponic greenhouse or vertical farm are 358% and 427% higher, respectively, than a conventional outdoor farm. Many experts believe that over time, CEA has the potential to be cost competitive with traditional field agriculture as operations scale and with technological advances. As an example, heating costs in CEA floriculture have decreased 85% from 2006 to 2020. This trend suggests heating costs in other CEA systems may have decreased similarly during that timeframe.

U.S. Vegetable Producers Look Abroad for New Opportunity

The United States Mexico Canada Agreement (USMCA), and the earlier NAFTA agreement, opened the door for competitively priced crops from Canada and Mexico in the domestic market. In 1998, 21% of the U.S. supply of crops grown in CEA (cucumbers, bell peppers, fresh herbs, lettuce, and tomatoes) were imported. Today, that figure has grown to 53% as Canada and Mexico have increased export volumes to the U.S.¹⁵ With over 4,200 acres, Canada has more than doubled the CEA growing area as the U.S. and is now a world leader in the industry.¹⁶ U.S. vegetable producers have noticed the success of their northern neighbors, and many have turned to CEA to compete with imports through differentiation of their product and to capture the associated price premium.


Figure 3 | U.S. Imports as a Percent of Total Supply

Source: USDA, MIM

CEA's domestic area under production for a number of vegetable crops expanded as well (Figure 4).¹⁷ Crops that were historically produced in CEA such as tomatoes and fresh herbs have seen gradual increases in production over the past 20 years while emerging crops such as lettuce, peppers, and strawberries have seen excellent growth in CEA production (Figure 5).18 This increase is primarily due to improved technology and growing methods that have more than doubled CEA yields for many crops since 2009.19 Further improvements to CEA practices continue to attract more growers and investors to the space as it is recognized as a viable farming method.

Figure 4 | U.S. Area Under CEA Production (Acres)

Source: USDA, MIM

Figure 5 | U.S. CEA Production: Year-over-Year Growth (2009 - 2019)

Vegetable	
Tomatoes	1.49%
Cucumbers	4.62%
Peppers	25.39%
Strawberries	10.09%

Sources: USDA, MIM

CEA Grows into the Mainstream

U.S. CEA companies have combined knowledge from international production, burgeoning investment, and robust technological innovation to break into markets typically dominated by conventional, outdoor growers. NatureSweet is the largest greenhouse grower in the U.S. with over 1,600 acres of greenhouses in North America, primarily producing popular varieties of snack tomatoes.^{20,21} NatureSweet has found a route to profitability through marketing a differentiated, higher quality product at a price premium (Figure 6). Similarly, Gotham Greens—a New York based greenhouse company that primarily produces leafy greens across

Figure 6 | CEA Over Convential Premiums Paid (2021)

Grape Tomato	Arugula	Bell Pepper
\$0.13 \$/oz premium	\$0.16 \$/oz premium	\$0.03 \$/oz premium
52% % premium	26%% premium	4%

Source: Walmart, Whole Foods, Kroger, Albertsons, Target, MIM

the U.S.—has employed innovative renewable energy practices to mitigate increased energy requirements and costs to create a viable CEA model. Interestingly, the COVID-19 pandemic

2019

served as a boon for Gotham Greens as its greenhouse production model proved more flexible than that of open-field producers, allowing the company to adjust to fractured supply chains.

This level of investment will help improve technologies and scale economies as the CEA industry aims to get operational cost parity with conventional producers. Increasingly efficient greenhouse hardware will also advance the environmental sustainability of CEA, helping propel the industry toward being part of the future of modern agriculture. While CEA may never fully replace conventional field agriculture, it has developed into a viable and profitable production option for several crops.

1.8%
1.6%
1.4%
1.2%
1.0%
0.8%
0.6%
0.4%
0.2%

2014

Figure 7 | Percentage of U.S. Production in Greenhouses

Source: USDA, MIM

Endnotes

0.0%

¹ USDA NASS, Census of Horticulture, December 2020

2009

- ² NYSERDA, Controlled Environment Agriculture, 2020
- ³ S2G Ventures, Growing Beyond the Hype: Controlled Environment Agriculture, 2020
- ⁴ USDA NASS, Census of Horticulture, December 2020
- 5 Horticulturae, Effects of Light Quality on Growth and Phytonutrient Accumulation of Herbs Under Controlled Environments, June 2017
- ⁶ Plant Physiology and Biochemistry, Plasticity of photosynthetic processes and the accumulation of secondary metabolites in response to monochromatic light environments: A review, September 2020
- International Journal of Environmental Research and Public Health, Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods, June 2015
- International Journal of Environmental Research and Public Health, Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods, June 2015
- 9 Agronomy for Sustainable Development, Contrasted Greenhouse Gas Emissions from Local Versus Long-Range Tomato Production, August 2013
- Of AgFunderNews, The Economics of Local Vertical & Greenhouse Farming are Getting Competitive, April 2019
- ¹¹ S2G Ventures, Growing Beyond the Hype: Controlled Environment Agriculture, 2020
- ¹² Nominal Costs Adjusted for Inflation
- ¹³ Rutgers University, How much Does It Cost To Grow a Greenhouse Crop?, 2006
- ¹⁴ American Society for Horticultural Science, Production Costs and Profitability for Selected Greenhouse Grown Annual and Perennial Crops: Partial Enterprise Budgeting and Sensitivity Analysis, March 2020
- ¹⁵ USDA ERS, Food Availability (Per Capita) Data System, March 2021
- ¹⁶ Canadian Horticultural Council, Greenhouse Vegetable Production in Canada, 2020 *This references greenhouse growing area in Canada
- ¹⁷ USDA ERS, Food Availability (Per Capita) Data System, March 2021
- ¹⁸ USDA NASS, Census of Horticulture, December 2020
- ¹⁹ USDA NASS, Census of Horticulture, December 2020
- ²⁰ The Produce News, New Campaign to Highlight NatureSweet's Growing Standards, January 2017
- ²¹ The Produce News, New Campaign to Highlight NatureSweet's Growing Standards, January 2017

Authors

MICHAEL GUNDERSON, PHD

Director, Agricultural Research & Strategy

Michael Gunderson is Director, Head of Agricultural Research & Strategy. He provides leadership to market analysis of annual and permanent agricultural crops, forest and timberland products, and agribusinesses to help drive investment strategy for MetLife Investment Management. In this role, Mike shares market insights regarding agricultural credit conditions, commodity price forecasts, and industry dynamics to support MIM's agricultural portfolio. Mike earned his Ph.D. in Agricultural Economics from Purdue University, and M.S. in Agricultural Economics from Cornell University, and a B.S. in Agribusiness, Farm, and Financial Management from the University of Illinois.

BLAINE NELSON

Associate Director, Agricultural Research & Strategy

Blaine Nelson is an Associate Director on MIM's Agricultural Research & Strategy team and is responsible for market research and investment strategy development in support of the Agricultural Finance Group. In this role, he produces research publications and agricultural forecasts, and monitors various sectors within the agricultural space. Prior to joining MetLife, Nelson worked with The Atkins Group as an Agricultural Analyst. He earned his M.S. in Agricultural and Consumer Economics at the University of Illinois and holds a B.S. in Applied Economics from the University of Minnesota.

TOM KARMEL

Associate Director, Agricultural Strategies Group

Tom Karmel is an Associate Director on the Agricultural Strategies Group team. He is responsible for quantitative market analysis to help drive investment strategy for MetLife Investment Management's agricultural platform. In this role, Tom produces market insights, models agricultural credit conditions, and forecasts commodity prices to support MIM's agricultural portfolio. Tom earned his M.S. in Agricultural Economics from Purdue University and completed his B.S. in Meteorology from Florida State University.

ROBERT GALBRAITH

Analyst, Agricultural Strategies Group

Rob Galbraith is an Analyst within MetLife Investment Management's (MIM) Agricultural Strategies Group. In this role, he provides portfolio level data and analysis on MIM's agricultural mortgage portfolio to internal decision makers as well as clients. His primary responsibilities are in portfolio management, reporting functions including reoccurring and ad-hoc reports, and management of the loan allocation process within MAG. Prior to joining MIM, Rob earned his B.S. in Agricultural Science from Cornell University.

Disclosures

This document has been prepared by MetLife Investment Management ("MIM") solely for informational purposes and does not constitute a recommendation regarding any investments or the provision of any investment advice or the offer or provision of any investment product or service, nor does it constitute or form part of any advertisement of, offer for sale or subscription of, solicitation or invitation of any offer or recommendation to purchase or subscribe for any securities or investment advisory services. The views expressed herein are solely those of MIM and do not necessarily reflect, nor are they necessarily consistent with, the views held by, or the forecasts utilized by, the entities within the MetLife enterprise that provide insurance products, annuities and employee benefit programs. The information and opinions presented or contained in this document are provided as the date it was written. It should be understood that subsequent developments may materially affect the information contained in this document, which none of MIM, its affiliates, advisors or representatives are under an obligation to update, revise or affirm. It is not MIM's intention to provide, and you may not rely on this document as providing, a recommendation with respect to any particular investment strategy or investment. The information provided herein is neither tax nor legal advice. Investors should speak to their tax professional for specific information regarding their tax situation. Investment involves risk including possible loss of principal. Affiliates of MIM may perform services for, solicit business from, hold long or short positions in, or otherwise be interested in the investments (including derivatives) of any company mentioned herein. This document may contain forward looking statements, as well as predictions, projections and forecasts of the economy or economic trends of the markets, which are not necessarily indicative of the future. Any or all forward-looking statements, as well as those included in any other materi

